
REALLY Advanced School in High Performance and Grid Computing
ICTP, Trieste, 11-22 April 2011

11 Apr 2011

11 Apr 2011

  Real processors have registers, cache,
parallelism - they are complicated!

  Why is this your problem?
  In theory, compilers understand all of this and

can optimize your code
  Generally optimizing algorithms across all

computational architectures is an impossible
task, hand optimization will always be needed.

  We need to learn how…
  to measure performance of codes on modern

architectures
  to tune performance of the codes by hand (32/64

bit commodity processors)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  When you are charged with optimizing an app
  Don't optimize the whole code

  Profile the code, find the bottlenecks
  They may not always be where you thought they were

  Break the problem down
  Try to run the shortest possible test you can to get

meaningful results
  Isolate serial kernels

  Keep a working version of the code
  Getting the wrong answer faster is not the goal.

  Optimize on the target architecture
  Optimizations for one architecture will not necessarily

translate

  The compiler is your friend!
  If you find yourself coding in machine language, you are

doing too much

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  The peak performance of a chip
  The number of theoretical floating point operations

per second
  Example: 2.4 Ghz Opteron can theoretically do 2

floating point operations per cycle, for a peak
performance of 4.8 Gflops

  Real performance
  Algorithm dependent, the actually number of

floating point operations per second
  Generally, most programs get about 10% or lower of

peak performance
  40% of peak, and you can go on holiday

  Parallel performance
  The scaling of an algorithm relative to its speed on

one CPU (core)
REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Monitoring System
  Observe both overall system performance and

single-program execution characteristics
  Look to see if the system is doing well and what

percentage of the resources your program is
using.

  Pro: easy
  Con: not very detailed

  Profiling and Timing the code
  Timing a whole programs (/usr/bin/time)
  Timing portions of the program (code

modification)
  Profiling

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  uptime - information about system
usage and user load

  ps - lets you see a “ snapshot” of the
process table

  top - process table dynamic display
  free - memory usage
  vmstat - memory usage monitor

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Virtual or swap memory
  This memory is actually space on the hard

drive
  The operating system reserves a space on

the hard drive for “ swap space”
  Time to access virtual memory VERY

large
  This time is attributed to the system, not

to your program, and you can observe it
e.g. as a difference in wall clock time
and CPU time

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

  man time

  user time: CPU time dedicated to your program
  sys time: time used by your program to execute

system calls
  real time: total time - walltime

11 Apr 2011

  Most programming languages provide
a means to access the systems own
timing functions

  C function: clock
 clock_t c0, c1;
 c0 = clock();
 section of the code…
 c1= clock();
 cputime = (c1 - c0)/(CLOCKS_PER_SEC);

  Fortran subroutine: cpu_time
 call cpu_time(t0)
 section of the code…
 call cpu_time(t1)
 cputime = t1 – t0

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Good application writers will take full
advantage of these to give users insight
into code performance

  Therefore, when writing an application,
you should consider timing of critical
parts of the program and printing timing
info as a part of its output

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Profiling is an approach to performance
analysis in which the amount of time
spent in sections of code is measured
(using either a sampling technique or
on entry/exit of a code block) and
presented as a histogram

  Allows a developer to target key time
consuming portions of codes

  Profiling can be done at varied levels of
granularity
  Function/subroutine, code block, loop and

source code line
REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Profiling: investigation of program
behavior using run- time information

  Profiler: conceptual module that
collects/analyzes run- time data

  Profile: a set of frequencies
associated with run-time events

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Most modern processors have one or more
registers dedicated to count low level
hardware information
  e.g. floating point operations, L1 cache misses, etc.

  This information is really useful to understand
at a very fine grain of detail what a program is
doing on the architecture

  PAPI (Performance API)
  The API provides function handles for setting and

accessing these counters
  http://icl.cs.utk.edu/papi/

REALLY Advanced School in

igh Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Hybrid (HW-assisted)
  Hardware Performance Monitors (HPMs)2.
  Dedicated HW collectors that deliver data

to SW module
  Fixed, low-overhead

  Software – Pure software
implementations
  Portable, flexible, high-overhead

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Simple gcc compiler flags can be used to get
profiling information
  Great place to start

  GNU:
  -p Generate extra code to write profile information

suitable for analysis program prof
  -pg Generate extra code to write profile information

suitable for analysis by program gprof.

  Procedure
  gcc -pg prog.c -o prog
  ./prog
  gprof prog gmon.out

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  TAU is a portable profiling and tracing
toolkit for performance analysis of
parallel programs
  http://www.cs.uoregon.edu/research/tau/

home.php
  Intel VTune

  http://en.wikipedia.org/wiki/VTune

  TotalView
  http://en.wikipedia.org/wiki/TotalView

  Profiling and optimization tuning tools
intermingle

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Profiling of the code
  Identification of bottlenecks
  Optimizing of one loop/function at a

time
  Starting with the most time consuming

fnctions (that is why we profile)
  Then the second and the third one

  Parallelizing of the program
  Then we can work on improving the

parallel performance (communication,
load balancing, etc..)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Improve memory performance (taking
advantage of locality)
  Better memory access patterns
  Optimal usage of cache lines
  Re-use of cached data

  Improve CPU performance
  Reduce flop count
  Better instruction scheduling
  Use optimal instruction set

  Use of highly optimized numerical
libraries

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Pipelining allows for a smooth progression of instructions
and data to flow through the processor

  Any optimization that facilitate pipelining will speed the
serial performance of your code

  As chips support more SSE like character, filling the
pipeline is more difficult.

  Stalling the pipeline slows codes down
  Out of cache reads and writes; Conditional statements

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Effective use of the memory hierarchy can
facilitate good pipelining

  Temporal locality:
  Recently referenced items (instr or data) are likely

to be referenced again in the near future
  iterative loops, subroutines, local variables
  working set concept

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Spatial locality:
  programs access data which is near to

each other
  operations on tables/arrays
  cache line size is determined by spatial

locality
  Sequential locality:

  processor executes instructions in
program order

  branches/in-sequence ratio is typically 1 to
5

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  CPU cache is generally set up as a series of
lines that can pull in a specified amount of
data a given time.

  Accessing cache is infinitely faster than the
main memory

  Get as much data in at a time
  Use that data to its fullest

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Strides - contiguous blocks of memory
  Accessing memory in stride greatly

enhances the performance
  Array indexing

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Basic idea: change the order of data
independent nested loops.
  Advantages:

  Better memory access patterns (leading to
improved cache and memory usage)

  Elimination of data dependencies (to increase
opportunity for CPU optimization and
parallelization

  Disadvantage:
  May make a short loop innermost

  Usually, compilers cannot do this

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Fortran:

  C: precisely the opposite (raw-wise)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

Loop order Execution time (Intel, 2.4 GHz)
i, j, k 8.77
i, k, j 7.61
j, i, k 2.00
j, k, i 0.57
k, i, j 0.90
k, j, i 0.44

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Computation is cheap, while branching
is very expensive

  Loops, conditionals, etc. cause
branching instructions to be performed:

 for(i = 0; i < N; i++) {
 do something useful(i);
 }

  Each time for statement is hit, a
branching instruction is called

  Therefore, (partially or fully) unrolling a
loop may be (highly) beneficial

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

  Compilers can do unrolling, but may make
them where it is not sensible

  This is not helpful when the work inside the
loop is not mostly number crunching

  GNU: -funrollloops, -funrollallloops
  PGI: -Munroll, -Munroll=n:M
  Intel: -unroll, -unrollM

11 Apr 2011

  Blocking for cache is
  An optimization that applies for datasets

that do not fit entirely into cache
  A way to increase spatial locality of

reference i.e. exploit full cache lines
  A way to increase temporal locality of

reference i.e. improves data reuse
  Example:

transposing
a matrix

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Block data
size = bsize
  mb = m/bsize
  nb = n/bsize

  These sizes can
be manipulated
to coincide with
actual cache
sizes on
individual
architectures

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

  Pro: Re-use of the array B
  Cons: Four arrays now fight for cache; more registers

needed

11 Apr 2011

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

  Pro: First loop may be scheduled more efficiently and
parallelized

  Cons: Less opportunity for out-of-order superscalar
execution; Additional loop created (minor)

11 Apr 2011

  Modern CPU's can perform anticipated
memory lookups ahead of their use for
computation
  Hides memory latency and overlaps computation
  Minimizes memory lookup times

  This is a very architecture specific item
  Very helpful for regular, in-stride memory

patterns
  GNU: -fprefetch-loop-arrays
  PGI: -Mprefetch[=option:n]
  Intel: -O3

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Operation replacement
  Replacing individual time consuming operations

with faster ones
  Floating point division

  Notoriously slow, implemented with a series of instructions
  So does that mean we cannot do any division if we want

performance?

  IEEE standard dictates that the division must be
carried out
  We can relax this and replace the division with

multiplication by a reciprocal
  Compiler level optimization, rarely helps doing this by

hand
  Much more efficient in machine language than

straight division, because it can be done with
approximates

  GNU: -funsafe-math-optimizations
REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Calling functions and subroutines requires
overhead by the CPU to perform
  The instructions need to be looked up in memory,

the arguments translated, etc...

  Inlining is the process by which the compiler
can replace a function call in the object with
the source code
  It would be like creating your application in one big

function-less format

  Advantage:
  Increase optimization opportunities
  Particularly advantegeous (necessary) when a

function is called a lot, and does very little work
(e.g. max and min functions)

  GNU: -finline-functions, Intel: -ip, -ipo
REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Elimination of redundant work
  Making use of superscalar features of CPUs

(instruction level parallelism)
  Special instructions (SSE - Streaming SIMD

Extensions)
  Multi-core CPU’s

  The key issue is memory bandwidth, and good
caching performance will be key
  This problem is worsened as more cores are added.

  Caching and memory performance vary greatly
  Some share L2 cache between all cores, some have

their own
  Varying number of pipelines to memory

  Increasing SIMD operations

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Performance programming on single
processors requires
  Detailed profiling
  Understanding memory

  levels, costs, sizes
  Understand SSE and how to get it to work

  In the future this will one of the most important aspects
of processor performance.

  Understand your program
  No subsitute for spending quality time with your code.

  Do not spend a lot of time doing what I
compiler will do automatically

  Start with compiler optimizations!

  Code optimization is hard work!
  And here we did not even consider parallelization!

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

